## **Random Packings and Liquid Crystals**



Ron Peled, Tel Aviv University, on sabbatical at the IAS and Princeton University Portions joint with Daniel Hadas Mathematical Physics Webinar, Rutgers University January 25, 2023

## Hard-core models (random packings)

- A hard-core model is a natural probability distribution on the ways to place nonoverlapping copies of a tile in a domain.
- Tile (or molecule): subset  $T \subset \mathbb{R}^d$ , possibly allowing some of its rotations too.
- Configuration in  $\Lambda \subset X$ : Non-overlapping translations of T (perhaps rotated) by elements of X, where we work either with  $X = \mathbb{R}^d$  or  $X = \mathbb{Z}^d$ .
- Fugacity parameter  $\lambda > 0$ : Controls typical number of tiles in a configuration (small  $\lambda$  dilute configurations, large  $\lambda$  dense configurations).
- Hard-core measure  $\mu_{\Lambda,\lambda}$ : On  $\mathbb{Z}^d$ , probability of a configuration  $\sigma$  is proportional to  $\lambda^{N_{\Lambda}(\sigma)}$ , where  $N_{\Lambda}(\sigma)$  = number of tiles of  $\sigma$  in  $\Lambda$  (with boundary values outside). On  $\mathbb{R}^d$ , similar construction with respect to suitable Lebesgue measure.
- At small  $\lambda$ , tiles are mostly isolated and hardly interact disorder.
- Do the configurations order at intermediate and large  $\lambda$ ? In which way?



# Example: Nearest-neighbor hard-core model on $\mathbb{Z}^d$

- Tile: an open disk of diameter  $\sqrt{2}$  around the origin. Translations in  $\mathbb{Z}^d$ .
- Small fugacity  $\lambda$ : typical configurations are disordered, as shown by the Dobrushin uniqueness theorem, van den Berg's disagreement percolation or a cluster expansion. In particular, there is a unique Gibbs measure.
- Maximal density packings in  $\mathbb{Z}^d$ : there are exactly two periodic packings of • maximal density, corresponding to the two sublattices of  $\mathbb{Z}^d$  (bipartite structure).
- **Theorem (Dobrushin 68)**:  $\exists \lambda_0(d)$  such that  $\forall \lambda > \lambda_0(d)$ , in a typical hard-core • configuration with "even-boundary conditions", most tiles are on even sites. In particular, the model has two periodic Gibbs measures.







**Open:** 1) Is there a single transition value  $\lambda_c(d)$  from disorder to order? 2) Behavior of  $\lambda_c(d)$  as  $d \to \infty$ ? (Galvin-Kahn 04, Samotij-Peled 14,  $\lambda_c(d) \to 0$  as a power of d, but optimal power is unknown)























## Other behaviors and liquid crystals

Monomer-dimer model: Tiles are edges of Z<sup>d</sup>.
 Heilmann-Lieb 70: The model is disordered at all values of λ.
 Alternative proof by van den Berg 99 using disagreement percolation.



- Liquid/gas invariant in distribution under rotations and translations of ℝ<sup>3</sup>.
  Crystal Broken rotation and translation symmetry (invariant only under discrete subgroups of rotations and translations)
- Liquid crystals:





**Columnar** Broken rotation symmetry, Translation symmetry broken only in a plane of directions

© Termine-Golemme 2021

© Dogic 2016

Broken rotation symmetry, preserved translation symmetry Smectic Broken rotation symmetry, Translation symmetry broken in only one direction

### Nematic liquid crystals: predictions and proofs

- Onsager 49 studied the packing of long rods in R<sup>3</sup> and predicted nematic order at intermediate densities.
  This remains unproven mathematically.
- **Rigorous proofs of nematic phase in other models:** 
  - Ioffe-Velenik-Zahradník 06: polydispersed rods on  $\mathbb{Z}^2$
  - Disertori-Giuliani 13: long rods of fixed length on  $\mathbb{Z}^2$ , intermediate density range
  - Heilmann-Lieb 79 and Jauslin-Lieb 18: interacting dimers



© Dogic 2016

- Disertori-Giuliani-Jauslin 20: anisotropic plates in  $\mathbb{R}^3$  with finite number of allowed orientations, intermediate density range.



#### Rods of length 7 on $\mathbb{Z}^2$ at different density regimes



© Shah-Dhar-Rajesh 2021

Low density disordered phase I

phase Intermediate density nematic phase

**High-density HDD phase** 

## Packing balls in the continuum

- An important problem regards the packing of balls in  $\mathbb{R}^d$ .
- Physicists predict crystalline order at high fugacity in dimension d = 3, but only nematic order in two dimensions.
- Richthammer 07: No translational order in two dimensions.
- Magazinov 18: Infinite cluster of nearly-touching balls at high fugacity in d = 2.
- Other parts of prediction remain unproved.
  No known method to prove continuous-symmetry breaking in such a system.



## Lattice balls and sliding phenomenon

Lattice approximation: Mazel-Stuhl-Suhov 19 (related to Jauslin-Lebowitz 18) considered a hard-core model on Z<sup>2</sup> (and hexagonal and triangular lattices) where the tile is {v ∈ R<sup>2</sup>: ||v||<sub>2</sub> ≤ r} for general r.



- Obtained a description of the maximal-density periodic packings.
- For all *r* with finitely many maximal-density periodic packings, they proved that samples from a high-fugacity state will equal one of these packings at most places.
- Sliding phenomenon: Finitely many exceptional r for which there are infinitely many maximal-density periodic packings (Mazel-Stuhl-Suhov 19, Krachun 19).
   Mazel-Stuhl-Suhov conjecture that there is no long-range order at high fugacity.





## The $2 \times 2$ hard-square model

- Tile: the square  $\{v \in \mathbb{Z}^2 : \|v\|_{\infty} \le 1\}$   $(r = \sqrt{2} \text{ of Mazel-Stuhl-Suhov study. Sliding})$ Configurations: Non-overlapping tiles with centers on the square lattice.
- Probability measure μ<sup>ρ</sup><sub>Λ,λ</sub>: Let Λ ⊂ Z<sup>2</sup> be finite and ρ be a configuration. Then μ<sup>ρ</sup><sub>Λ,λ</sub> is supported on configurations which agree with ρ outside Λ and is defined by μ<sup>ρ</sup><sub>Λ,λ</sub>(σ) ∝ λ<sup>N(σ)</sup>, where N<sub>Λ</sub>(σ) is the number of tiles of σ in Λ. Gibbs measure: probability measure over configurations in the entire Z<sup>2</sup> which is "consistent" with the probability measures μ<sup>ρ</sup><sub>Λ,λ</sub> (satisfies DLR condition).



Simulation of  $2 \times 2$  hard-square model at large  $\lambda$ 

# The $2 \times 2$ hard-square model

- Tile: the square  $\{v \in \mathbb{Z}^2 : \|v\|_{\infty} \le 1\}$   $(r = \sqrt{2} \text{ of Mazel-Stuhl-Suhov study. Sliding})$ Configurations: Non-overlapping tiles with centers on the square lattice.
- Probability measure μ<sup>ρ</sup><sub>Λ,λ</sub>: Let Λ ⊂ Z<sup>2</sup> be finite and ρ be a configuration. Then μ<sup>ρ</sup><sub>Λ,λ</sub> is supported on configurations which agree with ρ outside Λ and is defined by μ<sup>ρ</sup><sub>Λ,λ</sub>(σ) ∝ λ<sup>N(σ)</sup>, where N<sub>Λ</sub>(σ) is the number of tiles of σ in Λ. Gibbs measure: probability measure over configurations in the entire Z<sup>2</sup> which is "consistent" with the probability measures μ<sup>ρ</sup><sub>Λ,λ</sub> (satisfies DLR condition).
- Disordered phase (unique Gibbs measure) for small  $\lambda$ , by Dobrushin's uniqueness theorem or by van den Berg's disagreement percolation method.
- Our results clarify the structure of configurations in the high-fugacity regime.





Independent columns with large  $\lambda < \infty$ 



Simulation of  $2 \times 2$  hard-square model at large  $\lambda$ 

# Columnar order and characterization of periodic Gibbs measures

- Theorem 1 (Hadas-P. 2022): There exists λ<sub>0</sub> such that the 2 × 2 hard-square model at each fugacity λ > λ<sub>0</sub> admits a Gibbs measure μ<sub>Ver,0</sub> satisfying:
  - Invariance:  $\mu_{\text{Ver},0}$  is  $2\mathbb{Z} \times \mathbb{Z}$ -invariant and extremal (so also  $2\mathbb{Z} \times \mathbb{Z}$ -ergodic).
  - Columnar order:

$$\mu_{\text{ver},0}(\text{tile at } (x, y)) = \begin{cases} \Theta\left(\frac{1}{\lambda}\right) & x \text{ even} \\ \frac{1}{2} - \Theta\left(\frac{1}{\sqrt{\lambda}}\right) & x \text{ odd} \end{cases}$$



$$Cov_{\mu_{Ver,0}}(tile at (x_1, y_1), tile at (x_2, y_2)) \le Ce^{-c|x_1 - x_2| - \frac{c|y_1 - y_2|}{\sqrt{\lambda}}}$$

- By rotating and translating  $\mu_{Ver,0}$  we obtain four distinct Gibbs measures
- Theorem 2 (Hadas-P. 2022): Every periodic Gibbs measure is a mixture of these four measures
- Additional result: version of the chessboard estimate for periodic Gibbs measures

• Aim to use a Peierls-type argument: classify regions into "columnar ordered" and "row ordered" and prove that the interfaces between them are rare.



- Sticks: Tiles are classified into four types according to the parity of their coordinates. Sticks are the boundaries between tiles of different types.
- Sticks are necessarily horizontal or vertical segments and sticks of different orientation cannot meet.
- Properly-divided squares: A square R is said to be properly divided if there is a stick crossing both it and R<sup>−</sup>, where R<sup>−</sup> is a concentric square with (1 − 2ε) the dimensions of R for some fixed small ε > 0.



- Sticks: Tiles are classified into four types according to the parity of their coordinates. Sticks are the boundaries between tiles of different types.
- Sticks are necessarily horizontal or vertical segments and sticks of different orientation cannot meet.
- Properly-divided squares: A square R is said to be properly divided if there is a stick crossing both it and R<sup>-</sup>, where R<sup>-</sup> is a concentric square with (1 − 2ε) the dimensions of R for some fixed small ε > 0.
- Separation property: If two squares overlap enough then it cannot be that they are properly divided by sticks of different orientations.
  R = R+(εM,0)



- Sticks: Tiles are classified into four types according to the parity of their coordinates. Sticks are the boundaries between tiles of different types.
- Sticks are necessarily horizontal or vertical segments and sticks of different orientation cannot meet.
- Properly-divided squares: A square R is said to be properly divided if there is a stick crossing both it and R<sup>-</sup>, where R<sup>-</sup> is a concentric square with (1 − 2ε) the dimensions of R for some fixed small ε > 0.
- Separation property: If two squares overlap enough then it cannot be that they are properly divided by sticks of different orientations.
- Work with squares of mesoscopic side length  $b(\lambda)$  satisfying  $C\lambda^{1/4} < b(\lambda) < c\lambda^{1/2}$
- The basic estimate: In any periodic Gibbs measure  $\mu$ , for any such square R,

 $\mu(R \text{ is not properly divided}) \leq \exp\left(-c\frac{\operatorname{Area}(R)}{\sqrt{\lambda}}\right)$ 

• This is moreover multiplicative: The probability that distinct squares  $R_1, ..., R_n$  with the dimensions of R are all not properly divided is at most  $\exp\left(-c\frac{Area(R)}{\sqrt{\lambda}}n\right)$ .

## Basic estimate ideas 1

- Squares of mesoscopic side length  $b(\lambda)$  satisfying  $C\lambda^{1/4} < b(\lambda) < c\lambda^{1/2}$ .
- The basic estimate: In any periodic Gibbs measure  $\mu$ , for any such square R,  $\mu(R \text{ is not properly divided}) \le \exp\left(-c\frac{\operatorname{Area}(R)}{\sqrt{\lambda}}\right)$
- Chessboard estimate (consequence of reflection positivity): Work on a discrete torus. For any local event *E*,

$$\mu^{torus}(E) \le \mu^{torus}(\bar{E})^{1/N}$$

where  $\overline{E}$  is the event *E* reflected to fill the whole torus and *N* is the number of its reflected copies (as in figure).



# Basic estimate ideas 2

- Squares of mesoscopic side length  $b(\lambda)$  satisfying  $C\lambda^{1/4} < b(\lambda) < c\lambda^{1/2}$ .
- The basic estimate: In any periodic Gibbs measure  $\mu$ , for any such square R,  $\mu(R \text{ is not properly divided}) \leq \exp\left(-c\frac{\operatorname{Area}(R)}{\sqrt{\lambda}}\right)$
- Chessboard estimate (consequence of reflection positivity): Work on a discrete torus. For any local event *E*,

$$\mu^{torus}(E) \le \mu^{torus}(\bar{E})^{1/N}$$

where  $\overline{E}$  is the event *E* reflected to fill the whole torus and *N* is the number of its reflected copies (as in figure).

• The chessboard estimate, along with minor additional manipulations, reduce the basic estimate to showing that

$$\mu^{torus}(E_{b(\lambda)}) \le \exp\left(-c\frac{\operatorname{Area}(R)}{\sqrt{\lambda}}N\right)$$

where  $E_{b(\lambda)}$  is the event that all sticks on the torus are shorter than  $2b(\lambda)$ .

• This is proved by combinatorial counting of possible "stick components".

# Counting "stick components"

- A main part of the combinatorial proofs involves counting connected components of sticks and vacant faces, with all sticks of length at most  $2b(\lambda)$ .
- We estimate the number of such components with a fixed number v of vacant faces and a fixed number d of "degrees of freedom" for the length of sticks.



# **Open questions**

- Continuous-symmetry breaking: It is very important to develop methods to prove the breaking of continuous symmetry:
  - Study the high-fugacity behavior of balls in  $\mathbb{R}^d$ .
  - Study long rods in  $\mathbb{R}^d$ . Prove the existence of Onsager's nematic phase at intermediate densities. What is the behavior at high fugacity?
- Larger cubes and higher dimensions: We expect columnar order at high fugacity for k × k × ··· × k cubes with centers in Z<sup>d</sup>, for k, d ≥ 2. Some of our ideas may be relevant to this case (especially for d = 2). However, the model is only reflection positive for k = 2. Columnar order would entail the existence of dk<sup>d-1</sup> periodic and extremal Gibbs states.
- Study the high-fugacity behavior of other lattice packing models featuring the sliding phenomenon.
- Approach physics predictions on critical behavior.

