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Hard-core models (random packings)
• A hard-core model is a natural probability distribution on the ways to place non-

overlapping copies of a tile in a domain. 

• Tile (or molecule): subset 𝑇 ⊂ ℝ𝑑, possibly allowing some of its rotations too.

• Configuration in Λ ⊂ 𝑋: Non-overlapping translations of 𝑇 (perhaps rotated) by
elements of 𝑋, where we work either with 𝑋 = ℝ𝑑 or X = ℤ𝑑.

• Fugacity parameter 𝜆 > 0: Controls typical number of tiles in a configuration 
(small 𝜆 – dilute configurations, large 𝜆 - dense configurations).

• Hard-core measure 𝜇Λ,𝜆: On ℤ𝑑, probability of a configuration 𝜎 is proportional to 

𝜆𝑁Λ 𝜎 , where 𝑁Λ 𝜎 = number of tiles of 𝜎 in Λ (with boundary values outside).
On ℝ𝑑, similar construction with respect to suitable Lebesgue measure.

• At small 𝜆, tiles are mostly isolated and hardly interact – disorder.

• Do the configurations order at intermediate and large 𝜆? In which way?
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Example: Nearest-neighbor
hard-core model on ℤ𝑑

• Tile: an open disk of diameter 2 around the origin. Translations in ℤ𝑑.

• Small fugacity 𝜆: typical configurations are disordered, as shown by the Dobrushin
uniqueness theorem, van den Berg’s disagreement percolation or a cluster 
expansion. In particular, there is a unique Gibbs measure.

• Maximal density packings in ℤ𝑑: there are exactly two periodic packings of 
maximal density, corresponding to the two sublattices of ℤ𝑑 (bipartite structure).

• Theorem (Dobrushin 68): ∃𝜆0 𝑑 such that ∀𝜆 > 𝜆0 𝑑 , in a typical hard-core 
configuration with “even-boundary conditions”, most tiles are on even sites.
In particular, the model has two periodic Gibbs measures.
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• Open: 1) Is there a single transition value 𝜆𝑐 𝑑 from disorder to order?
2) Behavior of 𝜆𝑐 𝑑 as 𝑑 → ∞? (Galvin-Kahn 04, Samotij-Peled 14, 𝜆𝑐 𝑑 → 0 as a 
power of 𝑑, but optimal power is unknown)

𝝀 small 𝝀 large “𝝀 = ∞”



Dobrushin proof idea 1

4



Dobrushin proof idea 2
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Dobrushin proof idea 3
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Dobrushin proof idea 4
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Dobrushin proof idea 5
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Dobrushin proof idea 6
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Dobrushin proof idea 7
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Dobrushin proof idea 8
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Dobrushin proof idea 9
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Dobrushin proof idea 10
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Dobrushin proof idea 11
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Other behaviors and liquid crystals
• Monomer-dimer model: Tiles are edges of ℤ𝑑.

Heilmann-Lieb 70: The model is disordered at all values of 𝜆.
Alternative proof by van den Berg 99 using disagreement percolation.

• Liquid/gas – invariant in distribution under rotations and translations of ℝ3.
Crystal – Broken rotation and translation symmetry (invariant only under discrete 
subgroups of rotations and translations)

• Liquid crystals:
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Nematic
Broken rotation symmetry,

preserved translation symmetry

Disorderd (liquid/gas) Smectic
Broken rotation symmetry,
Translation symmetry 
broken in only one direction

Columnar
Broken rotation symmetry,
Translation symmetry broken 
only in a plane of directions
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Nematic liquid crystals: predictions and proofs

• Onsager 49 studied the packing of long rods in ℝ3 and predicted nematic order at 
intermediate densities.
This remains unproven mathematically.
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• Rigorous proofs of nematic phase in other models:
- Ioffe-Velenik-Zahradník 06: polydispersed rods on ℤ2

- Disertori-Giuliani 13: long rods of fixed length on ℤ2, 
intermediate density range
- Heilmann-Lieb 79 and Jauslin-Lieb 18: interacting dimers
- Disertori-Giuliani-Jauslin 20: anisotropic plates in ℝ3 with finite 
number of allowed orientations, intermediate density range.

Low density disordered phase     Intermediate density nematic phase         High-density HDD phase

Rods of length 7 on ℤ𝟐 at different density regimes

© Shah-Dhar-
Rajesh 2021



Packing balls in the continuum
• An important problem regards the packing of balls in ℝ𝑑.

• Physicists predict crystalline order at high fugacity in dimension 𝑑 = 3,
but only nematic order in two dimensions.

• Richthammer 07: No translational order in two dimensions.

• Magazinov 18: Infinite cluster of nearly-touching  balls at high fugacity in 𝑑 = 2.

• Other parts of prediction remain unproved.
No known method to prove continuous-symmetry breaking in such a system.
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Lattice balls and sliding phenomenon
• Lattice approximation: Mazel-Stuhl-Suhov 19 (related to Jauslin-Lebowitz 18)

considered a hard-core model on ℤ2 (and hexagonal and triangular lattices) where 
the tile is 𝑣 ∈ ℝ2: 𝑣 2 ≤ 𝑟 for general 𝑟.

• Obtained a description of the maximal-density periodic packings.

• For all 𝑟 with finitely many maximal-density periodic packings, they proved that 
samples from a high-fugacity state will equal one of these packings at most places.

• Sliding phenomenon: Finitely many exceptional 𝑟 for which there are infinitely 
many maximal-density periodic packings (Mazel-Stuhl-Suhov 19, Krachun 19).
Mazel-Stuhl-Suhov conjecture that there is no long-range order at high fugacity.
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The 2 × 2 hard-square model
• Tile: the square {𝑣 ∈ ℤ2: 𝑣 ∞ ≤ 1} (𝑟 = 2 of Mazel-Stuhl-Suhov study. Sliding)

Configurations: Non-overlapping tiles with centers on the square lattice.

• Probability measure 𝜇Λ,𝜆
𝜌

: Let Λ ⊂ ℤ2 be finite and 𝜌 be a configuration.

Then 𝜇Λ,𝜆
𝜌

is supported on configurations which agree with 𝜌 outside Λ and is 

defined by 𝜇Λ,𝜆
𝜌

𝜎 ∝ 𝜆𝑁 𝜎 , where 𝑁Λ 𝜎 is the number of tiles of 𝜎 in Λ.

Gibbs measure: probability measure over configurations in the entire ℤ2 which is 

“consistent” with the probability measures 𝜇Λ,𝜆
𝜌

(satisfies DLR condition).

Simulation of  2 × 2 hard-square model at large 𝝀



The 2 × 2 hard-square model
• Tile: the square {𝑣 ∈ ℤ2: 𝑣 ∞ ≤ 1} (𝑟 = 2 of Mazel-Stuhl-Suhov study. Sliding)

Configurations: Non-overlapping tiles with centers on the square lattice.

• Probability measure 𝜇Λ,𝜆
𝜌

: Let Λ ⊂ ℤ2 be finite and 𝜌 be a configuration.

Then 𝜇Λ,𝜆
𝜌

is supported on configurations which agree with 𝜌 outside Λ and is 

defined by 𝜇Λ,𝜆
𝜌

𝜎 ∝ 𝜆𝑁 𝜎 , where 𝑁Λ 𝜎 is the number of tiles of 𝜎 in Λ.

Gibbs measure: probability measure over configurations in the entire ℤ2 which is 

“consistent” with the probability measures 𝜇Λ,𝜆
𝜌

(satisfies DLR condition).

• Disordered phase (unique Gibbs measure) for small 𝜆, by Dobrushin’s uniqueness 
theorem or by van den Berg’s disagreement percolation method.

• Our results clarify the structure of configurations in the high-fugacity regime.
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“𝝀 = ∞” – fully-packed (order in columns) Independent columns with large 𝝀 < ∞ Simulation of  2 × 2 hard-square model at large 𝝀



Columnar order and characterization 
of periodic Gibbs measures

• Theorem 1 (Hadas-P. 2022): There exists 𝜆0 such that the 2 × 2 hard-square model 
at each fugacity 𝜆 > 𝜆0 admits a Gibbs measure 𝜇ver,0 satisfying:

– Invariance: 𝜇ver,0 is 2ℤ × ℤ-invariant and extremal (so also 2ℤ × ℤ-ergodic).

– Columnar order: 

𝜇ver,0 tile at 𝑥, 𝑦 =

Θ
1

𝜆
𝑥 even

1

2
− Θ

1

𝜆
𝑥 odd

– Decay of correlations: 

Cov𝜇ver,0 tile at 𝑥1, 𝑦1 , tile at 𝑥2, 𝑦2 ≤ 𝐶𝑒
−𝑐 𝑥1−𝑥2 −

𝑐 𝑦1−𝑦2
𝜆

• By rotating and translating 𝜇ver,0 we obtain four distinct Gibbs measures

• Theorem 2 (Hadas-P. 2022): Every periodic Gibbs measure is a mixture of these 
four measures

• Additional result: version of the chessboard estimate for periodic Gibbs measures
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Columnar order ideas 1

• Aim to use a Peierls-type argument: classify regions into “columnar ordered” and 
“row ordered” and prove that the interfaces between them are rare.
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Columnar order ideas 2

• Sticks: Tiles are classified into four types according to the parity of their 
coordinates. Sticks are the boundaries between tiles of different types.

• Sticks are necessarily horizontal or vertical segments and sticks of different 
orientation cannot meet.

• Properly-divided squares: A square 𝑅 is said to be properly divided if there is a 
stick crossing both it and 𝑅−, where 𝑅− is a concentric square with (1 − 2𝜖) the 
dimensions of 𝑅 for some fixed small 𝜖 > 0.
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Columnar order ideas 3

• Sticks: Tiles are classified into four types according to the parity of their 
coordinates. Sticks are the boundaries between tiles of different types.

• Sticks are necessarily horizontal or vertical segments and sticks of different 
orientation cannot meet.

• Properly-divided squares: A square 𝑅 is said to be properly divided if there is a 
stick crossing both it and 𝑅−, where 𝑅− is a concentric square with (1 − 2𝜖) the 
dimensions of 𝑅 for some fixed small 𝜖 > 0. 

• Separation property: If two squares overlap enough then it cannot be that they are 
properly divided by sticks of different orientations.
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Columnar order ideas 4

• Sticks: Tiles are classified into four types according to the parity of their 
coordinates. Sticks are the boundaries between tiles of different types.

• Sticks are necessarily horizontal or vertical segments and sticks of different 
orientation cannot meet.

• Properly-divided squares: A square 𝑅 is said to be properly divided if there is a 
stick crossing both it and 𝑅−, where 𝑅− is a concentric square with (1 − 2𝜖) the 
dimensions of 𝑅 for some fixed small 𝜖 > 0. 

• Separation property: If two squares overlap enough then it cannot be that they are 
properly divided by sticks of different orientations.

• Work with squares of mesoscopic side length 𝑏(𝜆) satisfying  
𝐶𝜆1/4 < 𝑏 𝜆 < 𝑐𝜆1/2

• The basic estimate: In any periodic Gibbs measure 𝜇, for any such square 𝑅,

𝜇 𝑅 is not properly divided ≤ exp −𝑐
Area 𝑅

𝜆

• This is moreover multiplicative: The probability that distinct squares 𝑅1, … , 𝑅𝑛 with 

the dimensions of 𝑅 are all not properly divided is at most exp −𝑐
𝐴𝑟𝑒𝑎 𝑅

𝜆
𝑛 .
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Basic estimate ideas 1

• Squares of mesoscopic side length 𝑏(𝜆) satisfying  𝐶𝜆1/4 < 𝑏 𝜆 < 𝑐𝜆1/2 .

• The basic estimate: In any periodic Gibbs measure 𝜇, for any such square 𝑅,

𝜇 𝑅 is not properly divided ≤ exp −𝑐
Area 𝑅

𝜆

• Chessboard estimate (consequence of reflection positivity): Work on a discrete 
torus. For any local event 𝐸, 

𝜇𝑡𝑜𝑟𝑢𝑠 𝐸 ≤ 𝜇𝑡𝑜𝑟𝑢𝑠 ത𝐸 1/𝑁

where ത𝐸 is the event 𝐸 reflected to fill the whole torus and 𝑁 is the number of its 
reflected copies (as in figure).  
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Basic estimate ideas 2

• Squares of mesoscopic side length 𝑏(𝜆) satisfying  𝐶𝜆1/4 < 𝑏 𝜆 < 𝑐𝜆1/2 .

• The basic estimate: In any periodic Gibbs measure 𝜇, for any such square 𝑅,

𝜇 𝑅 is not properly divided ≤ exp −𝑐
Area 𝑅

𝜆

• Chessboard estimate (consequence of reflection positivity): Work on a discrete 
torus. For any local event 𝐸, 

𝜇𝑡𝑜𝑟𝑢𝑠 𝐸 ≤ 𝜇𝑡𝑜𝑟𝑢𝑠 ത𝐸 1/𝑁

where ത𝐸 is the event 𝐸 reflected to fill the whole torus and 𝑁 is the number of its 
reflected copies (as in figure).  

• The chessboard estimate, along with minor additional manipulations, reduce the 
basic estimate to showing that

𝜇𝑡𝑜𝑟𝑢𝑠 𝐸𝑏(𝜆) ≤ exp −𝑐
Area 𝑅

𝜆
𝑁

where 𝐸𝑏(𝜆) is the event that all sticks on the torus are shorter than 2𝑏(𝜆).

• This is proved by combinatorial counting of possible “stick components”.
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Counting “stick components”

• A main part of the combinatorial proofs involves counting connected components 
of sticks and vacant faces, with all sticks of length at most 2𝑏(𝜆).

• We estimate the number of such components with a fixed number 𝑣 of vacant 
faces and a fixed number 𝑑 of “degrees of freedom” for the length of sticks.
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Open questions
• Continuous-symmetry breaking: It is very important to develop 

methods to prove the breaking of continuous symmetry:
- Study the high-fugacity behavior of balls in ℝ𝑑.
- Study long rods in ℝ𝑑. Prove the existence of Onsager’s nematic 
phase at intermediate densities. What is the behavior at high fugacity?

• Larger cubes and higher dimensions: We expect columnar order at 
high fugacity for 𝑘 × 𝑘 ×⋯× 𝑘 cubes with centers in ℤ𝑑, for 𝑘, 𝑑 ≥ 2.
Some of our ideas may be relevant to this case (especially for 𝑑 = 2). 
However, the model is only reflection positive for 𝑘 = 2.
Columnar order would entail the existence of 𝑑𝑘𝑑−1 periodic and 
extremal Gibbs states.

• Study the high-fugacity behavior of other lattice 
packing models featuring the sliding phenomenon.

• Approach physics predictions on critical behavior.
29
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